
SIGPROC–v3.7 : (Pulsar) Signal Processing Programs

Dunc Lorimer — Jodrell Bank Observatory — drl@jb.man.ac.uk — Saturday March 25, 2006

Summary: The SIGPROC package is a collection of programs written to convert and process fast-
sampled pulsar data into a compact and easy-to-use format suitable for off-line analyses for searching,
timing and polarimetry applications. This document describes how to install and run the various pro-
grams. Several example applications are presented using real and simulated data sets.

Contents

1 About SIGPROC 2

2 Installation procedure 3

3 Header information and data format 4

4 Data conversion using filterbank and splice 6

5 Creating mock data sets using fake 10

6 Looking at headers using header 11

7 Looking at data using bandpass, reader and pgplotter 13

8 Data reduction using decimate and dedisperse 15

9 Getting pulse profiles using fold and profile 17

10 Putting it all together: the quicklook data reduction script 21

11 Version history and plans for future work 24

A Monitoring programs using the Tk monitor widget 25

B Running TEMPO to generate polynomial coefficients 25

C The EPN data format 26

D Barycentre correction using barycentre 29

1

1 About SIGPROC

SIGPROC is a package designed to standardize the initial analysis of the many types of fast-sampled
pulsar data. Currently recognized machines are the Wide Band Arecibo Pulsar Processor (WAPP), the
Penn State Pulsar Machine (PSPM), the Arecibo Observatory Fourier Transform Machine (AOFTM),
the Berkeley Pulsar Processors (BPP), the Parkes/Jodrell 1-bit filterbanks (SCAMP) and the filterbank
at the Ooty radio telescope (OOTY). The package should help users look at their data quickly, without
the need to write (yet) another routine to read data or worry about big/little endian compatibility (byte
swapping is handled automatically). The current suite of programs is:

filterbank - convert raw pulsar-machine data to filterbank format: a stream of n-bit numbers corre-
sponding to multiple polarization and/or frequency channels.

splice - join together multiple filterbank files which have the same time stamp.

fake - produce fake filterbank format data containing periodic signals immersed in Gaussian noise for
testing and calibration of downstream programs.

decimate - add together frequency channels and/or time samples of incoming filterbank data to reduce
the time and/or frequency resolution (useful for quick-look purposes).

dedisperse - correct incoming filterbank data for interstellar dispersion, writing the output time series
as one or more dedispersed sub-bands.

fold - fold incoming filterbank or time series data modulo a pulse period. Pulses are output in ASCII
EPN (§C) or PSRFITS format. An Expect script to generate polynomial coefficients is also available.

profile - displays profiles from fold in ASCII or pseudo grey-scale plots to the standard output.

pgplotter - displays profiles from fold and other SIGPROC output to a PGPLOT window.

bandpass - write out the mean bandpass to an ASCII file.

header - read raw data files, filterbank or time series data and display header info as plain ASCII.

reader - read the filterbank or time series data and display in human-readable form.

quicklook - csh script to perform a quick analysis of total-power filterbank data on a known pulsar.

monitor - wish script to monitor programs running in a given directory using a Tk pop-up widget.

All of the programs within SIGPROC are written in C and can be run from the UNIX command-line.
Use is made of standard input and output streams so that piping between programs is possible to “glue”
together various tasks. As an example, the following pipeline:

% filterbank B0823+26.pspm | dedisperse -d 19 -s 4 | fold -p polyco.dat > B0823+26.prf

will read in and dedisperse raw PSPM data into four subbands which are then folded modulo the pulse
period based on a set of polynomial coefficients generated by TEMPO stored in the file polyco.dat. The
folded profiles for each band are written in ASCII format to the file B0823+26.prf.

2

A detailed description of these programs and scripts is given in the remainder of this document which is
structured as follows: in §2 we describe how to install SIGPROC; §3 describes the filterbank data and
header format used by all the programs; producing real and fake filterbank data is described in §4 and
§5 respectively; programs to look at the headers and raw data are discussed in §6 and §7; data reduction
tasks (decimation and dedispersion) are described in §8; folding filterbank data to produce pulse profiles
is described in 9; a script do quick data analyses is presented in §10 respectively; version history and plans
for future work (§11). Supplementary appendices deal with monitoring the programs (§A), generating
polyco.dat files using TEMPO (§B) and the EPN data format (§C).

2 Installation procedure

SIGPROC has so far been successfully installed for use on Solaris, Linux, HP-UX and Macs. ANSII C
was (hopefully!) adhered to fairly closely during writing of the programs so that installation on other
operating systems should also be possible. Installation proceeds as follows:

0: Download the package from http://www.jb.man.ac.uk/~drl/sigproc/sigproc.tar.gz

1: Unpack the gzip-compressed tar file and extract its contents:

gunzip -c sigproc-3.7.tar.gz | tar xvf -

2: The contents of the tar file will be distributed in the directory sigproc-3.7/. Go into this directory
and run the configuration script by typing:

cd sigproc-3.7

./configure

When prompted, supply the name of a directory in which you would like the SIGPROC executables to be
placed. If compiling on more than one system, log into the the other system and run the same script on
this computer. Note that only one copy of the source code is required if you are compiling under multiple
platforms.

3: For each operating system you are using, type:

make

in the sigproc-3.7 directory and let the compiler go to work.

Four other software packages are desirable, but not absolutely necessary. To output profiles in PSRFITS
format, you will need CFITSIO (heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html) and
uncomment and edit the appropriate path to the LFITS variable in your makfile.osname file. To take
advantage of the FFTW subroutines, you will need to install version 3 of this package (available from
fftw.org) and then uncomment and edit the LFFTW variable in makfile.osname. To create files
containing polynomial coefficients for high-precision folding, install the TEMPO software package which
is freely available from the Princeton pulsar website (pulsar.princeton.edu). To monitor the programs
using a Tk pop-up widget make sure that the wish shell is in your path (we recommend use of Tcl/Tk
version 8.0 or higher). This is freely available from scriptics.com. For making diagnostic plots you will
need to compile the quickplot Fortran program which requires the PGPLOT graphics package available
from astro.caltech.edu/~tjp/pgplot. Edit the makefile to give the appropriate path to PGPLOT

on your system before typing make quickplot.

3

3 Header information and data format

Before describing the programs in detail, some description of the header and data formats used within
SIGPROC is appropriate for those wishing to read the data into other programs. The filterbank

program (see §4) reads in the raw data files produced by the machine, dealing with the header information
contained in the files and the (usually non-trivial) channel ordering of the samples. filterbank outputs
the data in the following way:

HEADER_START stream_of_header_parameters HEADER_END stream_of_data_values

The HEADER_START and HEADER_END character strings signal the start and finish of a stream of header
parameters that describe the data. The default is to include these at the beginning of the data file. We
recognize that some users will prefer not to have to deal with the header in this way. For these users,
filterbank has a -headerfile command-line option to pipe the header into a seperate ASCII file (this
is described along with the other command-line options later on).

The header variables have been restricted to key parameters for ease of use. Currently these are:

• telescope id (int): 0=fake data; 1=Arecibo; 2=Ooty... others to be added

• machine id (int): 0=FAKE; 1=PSPM; 2=WAPP; 3=OOTY... others to be added

• data type (int): 1=filterbank; 2=time series... others to be added

• rawdatafile (char []): the name of the original data file

• source name (char []): the name of the source being observed by the telescope

• barycentric (int): equals 1 if data are barycentric or 0 otherwise

• pulsarcentric (int): equals 1 if data are pulsarcentric or 0 otherwise

• az start (double): telescope azimuth at start of scan (degrees)

• za start (double): telescope zenith angle at start of scan (degrees)

• src raj (double): right ascension (J2000) of source (hhmmss.s)

• src dej (double): declination (J2000) of source (ddmmss.s)

• tstart (double): time stamp (MJD) of first sample

• tsamp (double): time interval between samples (s)

• nbits (int): number of bits per time sample

• nsamples (int): number of time samples in the data file (rarely used any more)

• fch1 (double): centre frequency (MHz) of first filterbank channel

• foff (double): filterbank channel bandwidth (MHz)

• FREQUENCY START (character): start of frequency table (see below for explanation)

• fchannel (double): frequency channel value (MHz)

4

• FREQUENCY END (character): end of frequency table (see below for explanation)

• nchans (int): number of filterbank channels

• nifs (int): number of seperate IF channels

• refdm (double): reference dispersion measure (cm−3 pc)

• period (double): folding period (s)

A given header stream will contain most, but not necessarily all, of the above variables.

In the general case, the data consists of nifs polarization channels of nchans frequency channels of nbit

numbers. The data stream following the header can then be thought of as 1-D array of N elements with
indices running between 0 and N − 1, where

N = nifs× nchans × nsamples,

and nsamples is the observation time divided by tsamp. Thus, for a given IF channel i = (0, 1, 2, 3)
and frequency channel c = (0 . . . nchans − 1), the array index for sample s = (0, 1, 2 . . .) is

s × nifs × nchans + i × nchans + c.

The sky frequency of channel c is then simply

fch1 + c × foff .

We follow the Parkes/Jodrell Bank convention of assigning a negative frequency to foff in the headers
to signify that the highest frequency channel is fch1. Currently, all filterbank data is written out in this
order and the dedisperse program relies on this fact in its dedispersing algorithm (see §8).

Although this system works well for most applications, from version 2.3 there is a more flexible way
of describing the frequency channels. Instead of writing fch1 and foff, it is now possible to write the
individual frequency channel frequencies directly into the header in the following way:

FREQUENCY_START f1 f2 f3 f4 FREQUENCY_END

where f1, f2.... are the frequency channel values in MHz. These may be in any order, provided that the
f1 is the highest frequency (again this is stipulated because of dedisperse’s algorithm). This frequency
table approach is used by the splice program to deal with non-contiguous data described next.

5

4 Data conversion using filterbank and splice

The interface between the raw data and the rest of the SIGPROC package is the filterbank program.
As with all the programs on-line help is obtained by typing the name of the program followed by help:

% filterbank help

filterbank - convert raw pulsar-machine data to filterbank format

usage: filterbank <rawdatafile1> <rawdatafileN> -{options}

rawdatafile - raw data file (recognized machines: WAPP, PSPM, OOTY)

options:

-o filename - output file containing filterbank data (def=stdout)

-s skiptime - skip the first skiptime (s) of data (def=0.0)

-r readtime - read readtime (s) of data (def=all)

-i IFstream - write IFstream (IFstream=1,2,3,4)

-n nbits - write n-bit numbers (def=input format)

-c minvalue - clip DM=0 samples > mean+minvalue*sigma (def=noclip)

-swapout - perform byte swapping on output data (def=native)

-floats - write floating-point numbers (equal to -n 32)

-sumifs - sum IFs 1+2 to form total-power data

-headerfile - write header parameters to an ASCII file (head)

-headeronly - write ONLY binary header parameters

options for correlator (currently WAPP) data:

-hamming - apply Hamming window before FFT (def=nowindow)

-hanning - apply Hanning window before FFT (def=nowindow)

-novanvleck - don’t do van Vleck correction before FFT (def=doit)

-invert - invert the band after FFT (def=noinversion)

-zerolag - write just the zero-lag value for each IF

-rawcfs - write raw correlation functions (novanvleck)

-corcfs - write corrected correlation functions (vanvleck)

Given just the name of the raw data file as the argument, filterbank will determine the origin of the
data and, if it can read the file, unpack the samples before writing the header parameters and data as
described in §3. The header and data go to the standard output by default but can be redirected to a file
using the -o filename option, or in the standard way:

% filterbank rawdatafile > filterbankfile

With no further options, filterbank will read and unscramble all the data in the original file. A specific
portion of the data can be specified using the -r and -s command-line options. For example:

% filterbank rawdatafile -r 10.0 > filterbankfile

reads just the first 10 seconds of data. These options are useful for a quick look at the data.

6

Selecting and/or summing IF streams

By default, all the IF streams (if there are more than one) in the file are read and processed. To select
one or more of these, ignoring the others, use the -i option:

% filterbank rawdatafile -i 1 -i 2 > filterbankfile

will process just the first two IF channels of the raw data file. filterbank provides the option to sum
just the first two IF channels (to form total-power data) via the -sumifs option:

% filterbank rawdatafile -sumifs > filterbankfile

This is a useful, for example, to get just total power from polarimetry data for off-line searching.

ASCII headers

As mentioned in §3, filterbank will broadcast a header stream before writing the data. This header
is used by other downstream SIGPROC programs to process the data. To make use of it in analysis
with other programs, call the function read_header and link with the other routines contained in the
file read_header.c. For those who prefer not to be bothered with these routines, use the -headerfile

option when calling filterbank. For example:

% filterbank B0823+26.pspm -headerfile > B0823+26.fil

will create the file B0823+26.fil containing just the filterbank channels along with the relevant header
parameters in an ASCII file head. In this case:

Original PSPM file: B0823+26.pspm

Sample time (us): 80.000002

Time stamp (MJD): 51740.882986111108

Number of samples/record: 512

Center freq (MHz): 430.000000

Channel band (kHz): 62.000000

Number of channels/record: 128

the user is then left to parse this file as he/she feels fit. An alternative means of getting header information
would be to use the header program in the following example:

% filterbank B0823+26.pspm | header -tstart

which will return 51740.882986111108 to the standard output. Any of the header variable names listed
in §3 can be given as a command-line option to the header program. Further details are given in §7.

7

Changing the number of bits per sample

By default, filterbank will write the outgoing data with the same number of bits per sample as the
native format (e.g. 4 bits per sample for PSPM). For machines which write out larger numbers of bits
(e.g. the WAPP) it is useful to be able to pack the data more efficiently using the -n option. For example,
the sequence:

% filterbank wappdatafile -n 8 > filterbankfile

will process a WAPP data file (usually 16 bits per sample) and pack the outgoing samples as single-
byte integers. For search purposes, where only marginal loss in sensitivity is seen and data products are
reduced significantly, use of this option is highly recommended. For WAPP data, the loss in sensitivity
from 16 to 8 bits is negligible, packing down to 4 bits results in losses ∼5%.

Floating-point output

Currently, no descaling parameters are given in the header when packing down data. This means that
for applications where the absolute value of the data is necessary (e.g. polarization work) it is necessary
to store the data as floating-point numbers. The option -floats is provided for this purpose (although
this is really just an alias for -n 32).

Byte swapping issues

Multi-byte precision data are written in different orders depending on your machine’s operating system.
The original WAPP data, for example, was written on a PC (little endian format). The filterbank

program knows about this and automatically does any byte swapping required while reading. When it
comes to writing the data out, however, the program will always write data in the native order of the
processing machine. To swap the bytes around before writing for use on other machines, use the -swapout
option.

Correlator-specific options

Presently, the WAPP is the only correlator machine recognized by SIGPROC which records auto- and,
in polarization mode, cross-correlation functions for given numbers of lags. The autocorrelation function
R(τ), as a function of lag τ is defined by:

R(τ) = lim
T→∞

1

T

∫ T

0
V (t)V ∗(t + τ)dt,

where V (t) is the complex signal voltage as a function of time t. From the Weiner-Khinchin theorem, the
power spectral density function P (f) is the Fourier transform of R(τ):

P (f) =
1

2π

∫ +∞

−∞

R(τ)e−2πifτ dτ.

In practice to obtain the equivalent of frequency channels of a filterbank, the lags from each IF channel
need to be corrected for finite-level quantization — the so-called van Vleck correction (see for example
Hagen & Farley 1973, Radio Science, 8, 775–784) before the Fast Fourier Transform (FFT) to obtain the

8

spectra. For reference, the three-level van Vleck formula used within filterbank to correct measured
auto-correlation values (r) to unbiased ones (ρ) can be written as

r =
1

π

∫ ρ

0

(

exp

(

−(α/σ)2

1 + x

)

+ exp

(

−(α/σ)2

1 − x

))

dx
√

(1 − x2)
,

where α is the digitizer threshold and σ the rms voltage. This correction is what filterbank does by
default before FFTing the correlation functions to produce spectra.

A number of options exist to modify the default processing. To reduce FFT leakage, either a Hanning or
Hamming window can be applied to the correlation functions via the -hamming and -hanning switches.
Select -rawcfs to output the raw correlation functions quantized to the precision specified by nbits. To
get at the raw correlation functions, include the floating-point option:

% filterbank wappdatafile -rawcfs -floats > rawcffile

The -corcfs option will write out the correlation functions applying the van Vleck correction.

Obscure correlator options

For completeness, we mention two other correlator specific options: -novanvleck and -zerolag. The
-novanvleck option will not apply the quantization correction before the FFT. This feature is really for
instructional purposes since, to FFT the data to get frequency channels, signal-to-noise will be lost if the
van Vleck correction is not applied. Another option that is primarily used for testing is -zerolag. If
selected, this outputs just the first correlation function for each IF (the so-called zero lag) as a floating-
point number. Inserting τ = 0 into the above expression for P (f), we note that the zero lag is just the
sum over all the frequency channels — equivalent to a time series with no dispersion measure correction.

For WAPP data, one final option is -invert which inverts the band after the FFT to change the frequency
ordering. This should normally be dealt with in the WAPP header but is included here to process data
where the header information about frequency ordering is incorrect.

Splicing files

Most data acquisition systems store the collected data as single files per observation. For the new multiple
WAPP system at Arecibo, where each machine runs independently to sample a different part of the band,
a number of data files result for each frequency band. In order to analyse these datasets together, the
splice program will join multiple filterbank files, provided that they all have on the same time stamp.
The syntax is very simple:

splice file1.fil file2.fil file3.fil > splice.fil

where it is assumed that the input files file1.fil, file2.fil and file3.fil have already been converted
into filterbank format as described above. The resulting file, splice.fil in this example, is also in
filterbank format and can be read by subsequent programs. Although the files need not span a contiguous
radio frequency band, splice will complain if the input files do not all have the same time stamp, or if
they are not ordered in descending frequency order. The latter check is done so that the data conform to
the order expected by the dedispersion algorithm (§8).

9

5 Creating mock data sets using fake

The fake program was written to create test data sets containing pulses hidden in Gaussian noise:

% fake help

fake - produce fake filterbank format data for testing downstream code

usage: fake -{options}

options:

-period p - period of fake pulsar in ms (def=random)

-width w - pulse width in percent (def=4)

-snrpeak s - signal-to-noise ratio of single pulse (def=1.0)

-dm d - dispersion measure of fake pulsar (def=random)

-nbits b - number of bits per sample (def=4)

-nchans n - number of filterbank channels (def=128)

-tsamp t - sampling time in us (def=80)

-tobs t - observation time in s (def=10)

-tstart t - MJD time stamp of first sample (def=50000.0)

-nifs n - number of IFs (def=1)

-fch1 f - frequency of channel 1 in MHz (def=433.968)

-foff f - channel bandwidth in MHz (def=0.062)

-seed s - seed for Numerical Recipes ran1 (def=seconds since midnight)

-nosmear - do not add in dispersion/sampling smearing (def=add)

-swapout - perform byte swapping on output data (def=native)

-evenodd - even channels=1 odd channels=0 (def=noise+signal)

-headerless - do not write header info at start of file (def=header)

binary options:

-binary - create binary system

-bper - orbital period in hours (def=10.0)

-becc - eccentricity (def=0.0, circular)

-binc - inclination in degrees (def=90.0)

-bomega - longitude of periastron in degrees (def= 0.0)

-bphase - starting orbital phase (number between 0 and 1, def=0.0)

-bpmass - pulsar mass in solar units (def=1.4))

-bcmass - companion mass in solar units (def=5.0)

Default parameters are a filterbank similar to the PSPM. As an example, consider some fake PSPM data
for a 42-s observation of a pulsar with a period of ∼ π ms, a duty cycle of 10% and a DM of 30:

% fake -period 3.1415927 -width 10 -dm 30 -tobs 42 -nbits 4 > pspm.fil

Each channel of fake data has a zero mean and unit rms. The signal-to-noise ratio refers to the height
of a single pulse in each channel. In the above example, the default signal-to-noise was used. Weaker

10

pulsars can be easily made to challenge limits of off-line search algorithms etc. By default, the fake pulse
width w is smeared by an amount dependent on the filterbank setup using the quadrature sum:

√

w2 + tsamp2 + t2DM,

where tDM is the dispersion smearing of the pulse over a single filterbank channel given by:

tDM = 8.3 × 106ms DM ∆ν/ν3,

assuming the centre frequency ν is much larger than the channel bandwidth ∆ν (both measured in MHz).
Smearing can be disabled using the -nosmear option. Bit-format and byte-swapping options are identical
to those described for the filterbank program in the previous section. The starting seed of the random
number generator defaults to a number obtained by starting with the number of seconds since midnight
and calling the random number generator that many times. This can be overridden by specifying a seed
using the -seed option.

6 Looking at headers using header

The header program allows humans easy access to the raw data file, or the binary header string in the
filterbank data format. As an example of the full output, here is the header of our PSPM test data:

% header B0823+26.fil

Data file : B0823+26.fil

Header size (bytes) : 191

Data size (bytes) : 2359296

Data type : filterbank

Telescope : Arecibo

Datataking Machine : PSPM

Frequency of channel 1 (MHz) : 433.968000

Channel bandwidth (MHz) : -0.062000

Number of channels : 128

Time stamp of first sample (MJD) : 51740.882986111108

Gregorian date (YYYY/MM/DD) : 2000/07/15

Sample time (us) : 80.00000

Number of samples : 36864

Observation length (seconds) : 2.949120

Number of bits per sample : 4

Number of IFs : 1

alternatively, header can be used with one or more of the above command-line options to return just
the value of the parameter of interest (this is particularly useful when getting values from within scripts
without having to parse the standard output). Currently available options are:

-telescope - return telescope name

-machine - return datataking machine name

-fch1 - return frequency of channel 1 in MHz

-foff - return channel bandwidth in MHz

11

-nchans - return number of channels

-tstart - return time stamp of first sample (MJD)

-tsamp - return sample time (us)

-nbits - return number of bits per sample

-nifs - return number of IF channels

-headersize - return header size in bytes

-datasize - return data size in bytes if known

-nsamples - return number of samples if known

-tobs - return length of observation if known (s)

It should be noted that headersize, datasize, nsamples and tobs are not header variables per se; they
are derived by the program, based upon the file size and the real header variables.

12

7 Looking at data using bandpass, reader and pgplotter

The bandpass program is a simple utility to read incoming data and output a time-averaged bandpass:

% bandpass help

bandpass - outputs the pass band from a filterbank file

usage: bandpass {filename} -{options}

options:

filename - filterbank data file (def=stdin)

-d numdumps - number of dumps to average over (def=all)

-t dumptime - number of seconds to average over (def=all)

In its simplest form, bandpass averages over the entire data file. The data for Fig. 1 were obtained using:

% filterbank B0823+26.pspm | bandpass > bandpass.ascii

Figure 1: Output data from bandpass for the test observation of PSR B0823+26 using the PSPM.

The ASCII data is written in a simple format with one line for each frequency channel: frequency if1 if2...

for up to nifs seperate IFs. The -d and -t options allow averaging and output of the bandpass for a
given number of dumps, or seconds. Each dump is encapsulated within #START and #STOP separators:

#START

freq(1) if(1) if(nifs)

...

freq(nchans) if(1) if(nifs)

#STOP

where the freq(1) is the sky frequency of channel 1 in MHz and so on for all nchans channels. Although
plotting is left up to the users discretion in general, SIGPROC provides a little PGPLOT utility pgplotter

which plots data streams passed in this format. For example, try

13

% filterbank B0823+26.pspm | bandpass | pgplotter

Another useful program is reader which will print out filterbank-format data as an ASCII stream to the
standard output.

% reader help

reader - look at filterbank data in ASCII format

usage: reader {filename} -{options}

filename is the filterbank data file (def=stdin)

options:

-c c - output only frequency channel c (1...nchans) (def=all)

-i i - output only IF channel i (1...nifs) (def=all)

-numerate - precede each dump with sample number (def=time)

-noindex - do not precede each dump with number/time

-stream - produce a stream of numbers with START/STOP boundaries

In the general case, a filterbank file with nchans channels and nifs IFs, output is of the form:

% reader filterbankfile

time(1) if(1)c(1) if(1)c(2) if(1)c(nchans) if(nifs)c(nchans)

time(2) if(1)c(1) if(1)c(2) if(1)c(nchans) if(nifs)c(nchans)

time(3) if(1)c(1) if(1)c(2) if(1)c(nchans) if(nifs)c(nchans)

the default case is to print out all IF and frequency channels. The output can be tailored by the -i and
-c options to get just specific channels of interest. For example:

% filterbank B0823+26.pspm | reader -c 1 -c 2 -c 3 -c 4 | head

0.000000 5.000000 5.000000 6.000000 5.000000

0.000080 7.000000 5.000000 7.000000 6.000000

0.000160 7.000000 5.000000 6.000000 6.000000

0.000240 5.000000 5.000000 5.000000 7.000000

0.000320 5.000000 4.000000 5.000000 6.000000

0.000400 5.000000 4.000000 5.000000 6.000000

0.000480 5.000000 5.000000 5.000000 6.000000

0.000560 5.000000 5.000000 6.000000 5.000000

0.000640 6.000000 4.000000 5.000000 7.000000

0.000720 6.000000 6.000000 6.000000 5.000000

shows just the first four frequency channels of the PSPM data as a function of time. The -numerate

switch will change this time stamp to an integer counter. Time or integer counters can be turned off
completely via the -noindex option. The -stream option will, as in the case of the continuous bandpass
output above, output a stream of numbers encapsulated by #START and #STOP separators. As before, this
format may be passed to pgplotter for plotting.

14

8 Data reduction using decimate and dedisperse

Adding of adjacent time and/or frequency channels together to reduce the original resolution and size of
the original data file is possible using the decimate program:

% decimate help

decimate - reduce time and/or frequency resolution of filterbank data

usage: decimate {filename} -{options}

options:

filename - filterbank data file (def=stdin)

-c numchans - number of channels to add (def=all)

-t numsamps - number of time samples to add (def=none)

-T numsamps - (alternative to -t) specify number of output time samples

-n numbits - specify output number of bits (def=input)

-headerless - do not broadcast resulting header (def=broadcast)

Output data from decimate is in standard filterbank format so that it can be easily read in by other
SIGPROC programs. To get ASCII data, use the reader program (see §7). The following example adds
all the frequency channels together, and every 32 time samples, to create the time series shown in Fig. 2.

% filterbank B0823+26.pspm | decimate -t 32 -n 32 | reader > timeseries.ascii

Figure 2: Output time series from decimate for the test observation of PSR B0823+26 using the PSPM.

Note that we have used the -n option to force the output number of bits per sample to be 32. By default
decimate outputs data with the same number of bits as the incoming filterbank data. In this case, where
there are strong single pulses, adding all the channels together would result in a signal-to-noise loss when
trying to write the output time series with 4-bit precision.

While decimate is a good means for getting time series of weakly dispersed pulsars, it does not take
into account the effects of dispersion by the interstellar medium where pulses emitted at higher radio

15

frequencies travel faster through the interstellar medium, arriving earlier than those emitted at lower
frequencies. The time delay ∆t between a high frequency νhi relative to a lower on νlo is

∆t = 4.15 × 106 ms × (ν−2
lo − ν−2

hi) × DM,

where the frequencies are in MHz and the dispersion measure DM =
∫ d
0 ne dl (cm−3 pc) is the integrated

column density of free electrons along the line of sight. Here, d is the distance to the pulsar (pc) and
ne is the free electron density (cm−3). For distant high-DM pulsars, especially those with short periods,
dispersion needs to be accounted for to retain full time resolution. The dedisperse program does this
by adding frequency channels with the appropriate time delays given a DM value:

% dedisperse help

dedisperse - form time series from filterbank data or profile from folded data

usage: dedisperse {filename} -{options}

options:

filename - full name of the raw data file to be read (def=stdin)

-d dm2ddisp - set DM value to dedisperse at (def=0.0)

-b numbands - set output number of sub-bands (def=1)

-B num_bits - set output number of bits (def=32)

-o filename - output file name (def=stdout)

-c minvalue - clip samples > minvalue*rms (def=noclip)

-f reffreq - dedisperse relative to refrf MHz (def=topofsubband)

-F newfreq - correct header value of centre frequency to newfreq MHz (def=header value)

-n num_bins - set number of bins if input is profile (def=input)

-i filename - read list of channels to ignore from a file (def=none)

-p np1 np2 - add profile numbers np1 thru np2 if multiple WAPP dumps (def=all)

-j Jyfactor - multiply dedispersed data by Jyfactor to convert to Jy

-J Jyf1 Jyf2 - multiply dedispersed data by Jyf1 and Jyf2 to convert to Jy (use only for two-polarization data)

-wappinvert - invert WAPP channel order (when using LSB data) (def=USB)

-wappoffset - assume wapp fsky between two middle channels (for pre-52900 data ONLY)

-swapout - perform byte swapping on output data (def=native)

-nobaseline - don’t subtract baseline from the data (def=subtract)

-sumifs - sum 2 IFs when creating the final profile (def=don’t)

-headerless - write out data without any header info

-epn - write profiles in EPN format (def=ASCII)

-asciipol - write profiles in ASCII format for polarization package

-stream - write profiles as ASCII streams with START/STOP boundaries

The dedispersion algorithm reads in a block of data and gets the appropriately delayed sample by looking
forward in the array. This there requires that the frequency channels are passed down in descending
frequency order and dedisperse will complain if this condition is not met!

In the example data for the 1.5578-ms pulsar B1937+21 shown in Fig. 3, the left panel was produced via:

% filterbank B1937+21.539 | dedisperse -d 71.04 | reader > timeseries.ascii

16

Figure 3: A WAPP observation of the millisecond pulsar B1937+21 showing a single “giant”pulse. Left:
the dedispersed time series over the entire 100-MHz band. Right: the pulse seen in four dedispersed
25-MHz subbands. The length of the time series segment is ∼ 0.26 s. The sampling time is 63.32 µs.

This single pulse is shown in four dedispersed frequency subbands in the right-hand panel of Fig. 3. These
were obtained by adding a -b 4 option into the dedisperse command-line in the above pipeline. In this
case, dedispersion is carried out relative to the frequency of the first summed channel in each of the bands.

9 Getting pulse profiles using fold and profile

Obtaining integrated pulse profiles, and single pulses, from your data files is possible using the fold

program which allows you to fold filterbank data modulo a pulse period to produce pulse profiles. In
addition, there is now a basic ASCII viewing program profile which displays profiles from fold to the
standard output. fold accepts any number of IF and/or frequency channels, producing nifs × nchans

sets of profiles. The folding algorithm used is a simple one: for each time sample, compute the phase
based on a, possibly time-dependent, value of the pulse period and add that sample to the nearest phase
bin of the appropriate profile. The synopsis of fold is summarized below:

% fold help

fold - fold filterbank channels/time series data

usage: fold {filename} -{options}

options:

filename - full name of the raw data file to be read (def=stdin)

-o out_file - output file for pulse profile data (def=stdout)

-p fold_prd - period to fold (ms) or polyco file (def=polyco.dat)

-a accelern - fold using constant acceleration (def=0 m/s/s)

-f p_factor - multiply the period by p_factor (def=1.0)

-m m_factor - output multiple profiles (STREAM only; def=1)

-n num_bins - number of bins in folded profile(s) (def=window/tsamp)

-d time/num - dump profiles every time s or num pulses (def=nodumps)

-t samptime - hard-wire the sampling time (us) (def=header)

-l phaseval - phase value (turns) of left edge of pulse (def=0.0)

17

-r phaseval - phase value (turns) of right edge of pulse (def=1.0)

-j Jyfactor - multiply all profiles by Jyfactor to convert to Jy

-b baseline - subtract baseline from all profiles (def=autobase)

-dt timeoff - add a time offset in seconds to tstart (def=0.0)

-sk skiptim - skip the first skiptim s before folding (def=0.0)

-re readtim - read and fold only readtim s of data (def=ALL)

-ascii - write profiles as ASCII numbers (this is the default)

-epn - write profiles in EPN format (def=ASCII)

-acc - write out accumulated profiles (def=subints)

-bin - write profiles in SIGPROC binary format (def=ASCII)

-sub subint - shorthand for -nobaseline -stream -d subint.0

-psrfits - write profiles in PSRFITS format (def=ASCII)

-totalpower - sum polarizations 1+2 before writing (def=nosumming)

-asciipol - write profiles in JMCs ASCII format for polarization

-stream - write profiles as ASCII streams with START/STOP bounds

-nobaseline - don’t subtract baseline from profiles (def=subtract)

Folding data at a fixed period

Consider folding a series containing our fake ∼ π-ms pulsar:

% fake -period 3.14159 -nchans 1 -nbits 32 | fold -p 3.14159 > profile.ascii

Note that the default profile output is in ASCII format. This may be substituted by EPN or PSRFITS
using the -epn or -psrfits options on the command line. The format of this output is a line for each
bin:

bin_number if(1)c(1) if(1)c(2) if(1)c(nchans) if(nifs)c(nchans)

In order to avoid overflows during folding, fold will by default subtract an offset from each folded sample
calculated as the median value of a given data block. To turn off this feature, use the -nobaseline option.
The default number of bins is given by the next largest integer value to the ratio of the folding period
divided by the sampling time. This is, however, completely flexible. A lower number of bins would be
desirable, for example, when folding data for a faint pulsar or candidate. fold will permit oversampling
which can pay dividends for high signal-to-noise observations of short-period pulsars.

A useful feature of fold for weak pulsars, and those for which the pulse happens to lie on the edge of the
window is the -m option which allows the display of multiple pulses. For example, try:

% fake -period 3.14159 -nchans 1 -nbits 32 | fold -p 3.14159 -m 2 | pgplotter

Folding data using polynomial coefficients

For practical applications, the apparent pulse period is time-variable during the integration due to Doppler
shifts resulting from the Earth’s motion and (for binary pulsars) from Doppler shifts induced by orbiting
companions. To account for these the folding period needs to be updated during the integration. The
TEMPO timing package can be used to create a set of polynomial coefficients to predict the change in

18

period with time and fold can read these “polyco” files from TEMPO for these purposes. A script to
run TEMPO to produce these files is described in §B. To tell fold to read a polyco file, supply the name
of the filename with the -p option.

% filterbank B0823+26.pspm | fold -p polyco.dat -n 128 -epn > B0823+26.epn

will fold each channel of the sample PSPM data for PSR B0823+26 to produce 128-bin profiles written
to the file B0823+26.epn in EPN format. If no -p option is given to fold the program will look for the
file polyco.dat as a matter of course so that, in the above case, it was not strictly necessary to specify
the name of the polyco file. This is assumed in the following pipeline where the data are first dedispersed
at the reference DM value of 19.4 cm−3 pc before being passed to fold:

% filterbank B0823+26.pspm | dedisperse -d 19.4 -epn | fold > B0823+26.epn

Getting sub-integrations

In the above examples, fold produces one profile for each of nchans × nifs incoming data streams which
corresponds to folding over the entire data set. It is often desirable to look at sub-profiles dumped at
regular intervals during the observation — the -d (dump) option allows you to do this. Specifying a
floating-point number, say f seconds, in this mode will output the accumulated profile every f seconds.
The following example on our fake millisecond pulsar data would dump a subintegration exactly every 15
seconds:

% fold fakepulsar.fil -d 15.0 -p 3.1415927 -epn > fakeprofiles.epn

Supplying an integer argument with the -d option, say n, the profiles are dumped every n pulses. So -d

15 in the above example results in a profile being dumped every 15 periods (about 47 ms).

Single pulses and windowing profiles

Individual pulses can be obtained by specifying -d 1 to the fold command line. The following example
demonstrates this for the PSR B0823+26 PSPM data:

% filterbank B0823+26.pspm | dedisperse -d 19.4 | fold -d 1 -epn > B0823+26.epn

The resulting EPN file contains a record for each single pulse. For this short data set, this amounts to
just five single pulses shown in Fig. 4.

For single-pulse applications, where the off-pulse region of the profile is usually not interesting, it is
desirable to be able to set a window around the pulse. The fold program allows setting of windows via
the -l and/or -r command-line options which specify the left and right-hand phase values of the windows.
Phase values should be specified in turns ranging between 0.0 and 1.0. For example, the pulses in the
lower panel of Fig. 4 were obtained using fold -l 0.825 -r 0.925 for the PSR B0823+26 dataset. As
before for the full profile, unless specified otherwise, fold will choose the number of bins based on the
size of the window divided by the sampling interval.

19

Figure 4: Top: dedispersed single pulses for the PSPM test observation of PSR B0823+26. Bottom: the
same data set after applying a phase window of 0.825 to 0.925 (see text)

All of the above examples have used a seperate plotting program to produce the profiles for the figures.
Since each user tends to have his/her favourite method for producing such plots, no facility exists within
SIGPROC to to this. To get a quick look at profiles, there is now a program profile which will display
ASCII representations to the standard output. The program has two modes of operation: 2-D profile
“plots” or 1-D grey-scale representations. To get a 2-D profile - the output from fold needs to come in
the standard ASCII format. For example, let’s create and fold data from a 1-s pulsar:

fake -period 1000.0 -nchans 1 | fold -p 1000.0 | profile

The output from profile would then be a mock 2-D profile and will look something like this:

##

##

##

##

##

##

##

##

##

##

##

##

###

####

####

####

####

##

##

To get a 1-D pseudo “grey-scale” plot, the profiles need to be output from fold using the stream option.
This is particularly useful if you wish to display profiles as sub-integrations or folded frequency channels.
For example, to display additions of every 2 pulses from our 1-s fake pulsar we would do the following:

fake -period 1000.0 -nchans 1 | fold -p 1000.0 -stream -d 2 -nobaseline| profile

20

to produce the following output showing subintegration index and elapsed time to the left of each profile:

|0001|00:00:00| ,$#, |

|0002|00:00:02| $#, |

|0003|00:00:04| ,#$, |

|0004|00:00:07| ,@#: |

|0005|00:00:09| ##, |

|0006|00:00:09| $#, |

Where the -nobaseline option during folding has been used to preserve the original levels which would
otherwise get changed each subintegration. Note also that the last “subintegration” in this plot is in fact
the integrated profile which is dumped by fold as a matter of course. Frequency channel plots can be
produced in a similar way. For example, try creating a 100-ms pulsar with 32 channels and a DM of 500
and piping this through fold and profile.

fake | fold -p 100.0 -stream -nobaseline | profile -frequency

where the -frequency option will be required to label the frequency channels correctly.

10 Putting it all together: the quicklook data reduction script

As an application of most of the programs discussed in the preceding sections, we conclude with the
quicklook data analysis script which is designed to dedisperse and fold raw pulsar machine data taken
on a known pulsar and produce a diagnostic output plot summarizing various aspects of the data:

% quicklook help

usage: quicklook <filename> -{options}

options:

-read time - read and process only time (s) of data

-skip time - skip the first time (s) of data

-addc nchans - add nchans chans together before dedispersion (def=none)

-addt nsamps - add nsamps samples together before dedispersion (def=none)

-nsints n - specify number of time sub-integrations (def=8)

-nbands n - specify number of frequency sub-bands (def=8)

-period p - fold data at constant period (ms) (def=polyco)

-dm dmvalue - dedisperse using dmvalue (pc cm-3) (def=polyco)

-clip value - clip samples that deviate more than value*rms (def=noclipping)

-nbins n - fold data using n bins (def=128)

-left phase - specify left-hand phase window (def=0.0)

-right phase - specify right-hand phase window (def=0.0)

-singlepulse - set number of subints to be the number of pulses

-psr name - fix source name for running TEMPO (def=filestem)

-mypolyco - use an existing polyco file (def=make one)

-fakescale - plot channels/bands using fake grey scale (def=real)

21

-clean - remove large files before and after (def=keep them)

-wipe - remove large files beforehand (def=keep them)

-ext string - add a file extension string to output files (def=none)

As an example, the command:

% quicklook J1713+0747.744 -nbands 64 -nsints 32 -read 5

reduces the first 5 seconds of a WAPP observation of the millisecond pulsar J1713+0747 producing the
plot shown in Fig. 10. N.B. Use of this script assumes that you have the quickplot program compiled
(see §2 for further details).

22

Figure 5: Sample output from the quicklook script for the millisecond pulsar J1713+0747 observed
by the WAPP. Top panel shows a 1024-point average of the dedispersed time series which has been
normalised (as far as possible) so that it has a zero mean and unit rms. Below this are two panels
showing the dedispersed frequency sub-bands (which clearly show the dispersion of the pulsar) and time
sub-integrations as a function of pulse phase. The bottom plot is the integrated pulse profile. The signal-
to-noise rato of this profile is reported at the top of the plot along with essential header information.

23

11 Version history and plans for future work

The file version.history summarizes the work done on SIGPROC to date:

1.0 - 2001/02/26 - first version developed between summer 1999 and early 2001

1.1 - 2001/11/16 - filterbank now accepts multiple files as input

1.2 - 2001/12/20 - filterbank can now accept Parkes/Jodrell 1-bit data

1.3 - 2002/01/17 - merged IHS modifications to dedisperse WAPP folded data

1.4 - 2002/01/29 - fixed bug in period calculation and check source name

1.5 - 2002/02/07 - added -invert to filterbank and <50MHz bw to wapp2fb

1.6 - 2002/02/19 - upgraded old BACSPIN reader to read BCPM search data

1.7 - 2002/04/15 - added profile program, wapp2fb can now read 8-bit data

1.8 - 2002/05/16 - fixed bug in updating polyco when folding long timeseries

1.9 - 2002/06/25 - fold can now take constant acceleration to update period

2.0 - 2003/04/02 - added SIGPROC binary profile format for input to dedisperse

2.1 - 2003/06/03 - added pgplotter utility and frequency tables in headers

2.2 - 2003/09/20 - works for new WAPP format (use 2.1 for _very_ early data)

2.3 - 2003/10/24 - added depolyco utility for resampling time series

2.4 - 2003/10/29 - dedisperse profiles using Ingrid/Joe’s fftshift routines

2.5 - 2004/06/21 - fix polyco bug, write PSRFITS profiles, Ingrid’s WAPP mods

2.6 - 2004/07/02 - re-introduced use of FFTW libraries

2.7 - 2004/08/18 - updated quickplot and filterbank following first ALFA run

2.8 - 2004/08/22 - added barycentre program and, unofficially, find and best

2.9 - 2004/09/06 - small changes to scripts and capability to read >2 GB files

3.0 - 2004/11/06 - fold now dumps at exact tsec intervals. *new* blanker prog

3.1 - 2005/03/24 - fix single-pulse time stamps and correct TEMPO site in .prf

3.2 - 2005/04/18 - find.f now changed to seek.f npts.inc changed to 2**23

3.3 - 2005/05/02 - incorporated Ramach’s implementation of the tree algorithm!

3.4 - 2005/07/15 - filterbank can now read GMRT fast-sampled filterbank data

3.5 - 2006/01/16 - fake does binaries (ta Mike and Ralph!) and peak.f from seek

3.6 - 2006/02/28 - added dice.c and Maura’s mods to single-pulse searching

3.7 - 2006/03/01 - added Mike’s tune.c and mods from MMB search processing

All suggestions for improvements, including (best of all!) offers to contribute write and/or improved
routines for future releases of the package are most welcome via email: drl@jb.man.ac.uk.

Acknowledgements

In putting together the SIGPROC package, I had the good fortune to work with a number of people who
kindly donated existing routines or offered to write new ones. Andy Dowd wrote the original version of
what became the wapp2fb routine for converting raw WAPP correlation values into spectra. Jeff Hagen
also contributed to this effort and wrote the routines used for reading WAPP headers and byte swapping.
Ingrid Stairs provided the pspm_decode routine — a C-version of an original Fortran–77 subroutine
written by Alex Wolsczcan. Ingrid also debugged dedisperse so that it can handle WAPP timing-mode
data. Mike Keith and Ralph Eatough added the binary options to fake. Use was also made of some
Numerical Recipes routines for FFTs and random number generation in fake. Finally, many thanks to
Jim Cordes, Maura Mclaughlin, Ramesh Bhat, Ingrid Stairs and Joanna Rankin for their help in putting
together and debugging some of the routines, and their suggestions for functionality.

24

A Monitoring programs using the Tk monitor widget

The SIGPROC programs run without any messages to the standard output. To keep track of their
progress, a wish script: monitor can run in the background.

To start the monitor script running, go to the directory where you are processing your files and type
monitor. For example, starting a filterbank command:

% filterbank J1713+0747.744 -sumifs > J1713+0747.744.fil

will cause the following status bar to appear in the upper left-hand corner of the screen:

This counter will tick away updating as the file gets updated until the program is finished. If you have
several jobs running, in a pipeline for example, several status bars will appear until their respective job
is completed. To stop the monitor script at any time, type:

% monitor off

Once the program is finished what it is doing, the monitor will go to sleep and wait for another SIGPROC
program to start.

Note that you will confuse the script if you have two programs running from the same directory (for
example two filterbank processes running on different raw datafiles) since the programname.monitor

file will get updated by both programs. For such applications, run the programs from separate directories.

The monitor script polls programs by looking at logfiles which are written whenever the file monitor.running
exists in the working directory. If you prefer not to use monitor but would like to look at these logfiles,
simply create the file monitor.running in your area

% touch monitor.running

then run a SIGPROC program and tail the resulting programname.monitor file to keep track of what
is going on. For example, while dedisperse is running in a pipeline you would see the following:

% tail dedisperse.monitor

input stdin status time:0.1s:DM:35.0pc/cc output stdout

input stdin status time:0.2s:DM:35.0pc/cc output stdout

To turn off this logging mode, simply delete the monitor.running file.

B Running TEMPO to generate polynomial coefficients

If you have expect in your path, you will also be able to take advantage of polyco a simple script designed
to take the pain out of running TEMPO to generate files containing polynomial coefficients for use by
fold. The synopsis of polyco is as follows:

25

% polyco help

polyco - a script to run TEMPO to generate a polyco.dat file

usage: polyco psrname -{options}

psrname - name of the pulsar as it appears in tztot.dat

-freq f - frequency in MHz (def=1410 MHz)

-nspan n - span of each polyco set in minutes (def=15 min)

-ncoeff n - number of coefficients in each polyco set (def=9)

-maxha h - maximum hour angle (def=2 hours)

-mjd m - mjd to calculate for (def=today)

-mjds s - starting mjd (def=today)

-mjdf f - finishing mjd (def=today)

-par p - specify parfile (def=tzpar area)

-site s - specify site code or alias (def=Arecibo)

It is assumed that you have TEMPO installed on your computer so that the tempo executable file is in your
path, and the TEMPO environment variable set. At Arecibo, a solaris version of TEMPO can be found in
/home/pulsar/bin/tempo and the TEMPO environment variable should be set to /home/pulsar/tempo11.

Running polyco is then a matter of giving a pulsar name from the list of ephemeredes contained in
$TEMPO/tztot.dat and the start and stop MJD ranges over which you wish the coefficients to apply.
The default is to generate coefficients for use at the time you run TEMPO.

C The EPN data format

The European Pulsar Network (“EPN”) is an association of European astrophysical research institutes
that co–operate in the subject of pulsar research. The EPN format was developed for the exchange of
pulse profiles between different groups of individuals to permit a free interchange of data. The following
text was taken from a paper which originally appeared in Astronomy & Astrophysics Supplement Series
(1998) 128 541–544 and is included here for quick reference.

Each EPN file consists of one or more blocks. The basic structure of an EPN block is shown in Fig. 6.
Each file has a common fixed length header followed by a number of individual data streams of equal
length. The header describes the data, containing information on the pulsar itself, the observing system
used to make the observation as well as some free-form information about the processing history of the
data. The onus is on the site–specific conversion process to ensure correct conversion to the standardized
entries and reference to common catalogues (e.g. the Taylor et al. 1993 catalogue of pulsar parameters).
The full list of header variables is given in Tables 1 and 2.

The data streams themselves may be outputs of different polarization channels, or individual channels
(bands) of a filterbank or a combination thereof. In total, there may be Nfreq data streams of i.e. different
frequencies for each polarization. Each data stream starts with a small, fixed length sub-header in front
of the actual data values. The number of data streams and their length may vary between different EPN
files, but is constant within each file. A character field and an ordinal number is provided for each stream
for its identification.

26

Position Name Format Unit Comment

1 version A8 EPN + version of format (presently EPN05.00)
9 counter I4 No. of records contained in this data block

13 history A68 comments and history of the data

81 jname A12 pulsar jname
93 name A12 common name

105 Pbar F16.12 s current barycentric period
121 DM F8.3 pc cm−3 dispersion measure
129 RM F10.3 rad m−2 rotation measure
139 CATREF A6 pulsar parameter catalogue in use
145 BIBREF A8 bibliographical reference key (or observer’s name)
153 8X blank space free for future expansion

161 α2000 I2,I2,F6.3 hhmmss right ascension of source
171 δ2000 I3,I2,F6.3 ddmmss declination of source
182 telname A8 name of the observing telescope (site)
190 EPOCH F10.3 day modified Julian date of observation
200 OPOS F8.3 degrees position angle of telescope
208 PAFLAG A1 A = absolute polarization position angle, else undefined
209 TIMFLAG A1 A = absolute time stamps (UTC), else undefined
210 31X blank space free for future expansion

241 xtel F17.5 m topocentric X rectangular position of telescope
258 ytel F17.5 m topocentric Y rectangular position of telescope
275 ztel F17.5 m topocentric Z rectangular position of telescope
292 29X blank space free for future expansion

321 CDATE I2,I2,I4 d m y creation/modification date of the dataset
329 SCANNO I4 sequence number of the observation
333 SUBSCAN I4 sub–sequence number of the observation
337 Npol I2 number of polarizations observed
339 Nfreq I4 number of frequency bands per polarisation
343 Nbin I4 number of phase bins per frequency (1-9999)
347 tbin F12.6 µs duration (sampling interval) of a phase bin
359 tres F12.6 µs temporal resolution of the data
371 Nint I6 number of integrated pulses per block of data
377 ncal I4 tbin bin number for start of calibration signal
381 lcal I4 tbin length of calibration signal
385 FLUXFLAG A1 F = data are flux calibrated in mJy, else undefined
386 15X blank space free for future expansion

401 80X blank space free for future expansion

Table 1: A description of the EPN format variables.

27

Header

480 Characters

Sub-Header

160 Characters

Data

Sub-Header

160 Characters

Data

Sub-Header

160 Characters

Data

etc. ...

Figure 6: Schematic representation of an EPN data block.

Format Compatible Software

To incorporate the capability to read and write data in this format within existing analysis software, a
simple routine exists which can read and write data in this format. In addition, we have written some
sample programs which can plot the data and display the header parameters. The software are written in
Fortran—771 and have been packaged into a single UNIX tar file which is freely available via the Internet

from http://www.jb.man.ac.uk/~drl/download/epn.tar.gz

To uncompress and extract the contents of the tar file on a UNIX operating system, issue the commands:

% gunzip epnsoft.tar.gz

% tar xvf epnsoft.tar

The present package contains some sample data and two example programs — plotepn and viewepn

which plot and view EPN files respectively. The ASCII file 00README in this packages gives further
details of the software and how to use it.

1some simple C utilities are planned for a future version of SIGPROC

28

Position Name Format Unit Comment

481 IDfield A8 type of data stream (I,Q,U,V etc.)
489 nband I4 ordinal number of current stream
493 navg I4 number of streams averaged into the current one
497 f0 F12.8 effective centre sky frequency of this stream
509 Uf A8 unit of f0

517 ∆f F12.6 effective band width
529 U∆ A8 unit of ∆f

537 tstart F17.5 µs time of first phase bin w.r.t. EPOCH
554 7X blank space free for future expansion

561 SCALE E12.6 scale factor for the data
573 OFFSET E12.6 offset to be added to the data
585 RMS E12.6 rms for this data stream
597 Papp F16.12 s apparent period at time of first phase bin
613 28X blank space free for future expansion

641 Data(1) I4 scaled data for first bin
4(Nbin − 1) + 641 Data(Nbin) I4 data for last bin of stream

640 + Nrecords ∗ 80 end of first stream

Table 2: The sub-header variables within an EPN file

D Barycentre correction using barycentre

A simple utility barycentre exists to convert a time series or filterbank file to an equivalent frame which
is at rest with respect to the solar system barycentre. The synposis of the program is

% barycentre help

barycentre - refer a datafile to a frame at rest wrt the solar system barycentre

usage: barycentre inputfile -{options} > outputfile

inputfile - the name of the filterbank/time series file

-mypolyco - take user-defined polyco.bar file (def=create one)

-verbose - write out barycentre information to stderr (def=quiet)

By default, barycentre runs TEMPO to create a file polyco.bar which it then uses to perform the cor-
rection. If you would prefer to supply a file to do this, create one in advance, call it polyco.bar and use
the -mypolyco option.

29

Index

ASCII headers, 7

Backends
AOFTM, 2
BPP, 2
OOTY, 2
Parkes/Jodrell filterbanks, 2
PSPM, 2
WAPP, 2

bandpass inversion, 9
big endian, 2
byte swapping, 2, 8

Data formats
-ascii, 18
-stream, 15
EPN, 26
SIGPROC, 4

dedispersion, 15

floating-point output, 8

Hamming smoothing, 9
Hanning smoothing, 9
Header parameters

FREQUENCY END, 5
FREQUENCY START, 4
az start, 4
data type, 4
fch1, 4
fchannel, 4
foff, 4
machine id, 4
nbits, 4
nchans, 5
nifs, 5
nsamples, 4
period, 5
rawdatafile, 4
refdm, 5
source name, 4
src dej, 4
src raj, 4
telescope id, 4
tsamp, 4
tstart, 4
za start, 4

installation, 3

little endian, 2

monitoring programs, 25

oversampling, 18

polyco.dat, 2, 19, 25
Programs

bandpass, 2, 13
decimate, 2, 15
dedisperse, 2, 17
fake, 2, 10
filterbank, 2, 6
fold, 2, 17
header, 2, 11
monitor, 2
pgplotter, 2, 14
profile, 2
quicklook, 2, 21
reader, 15
splice, 2, 9

pulse windowing, 19

selecting IF streams, 7
single pulses, 19
Software Packages

PGPLOT, 3
TEMPO, 3, 19, 25
Tcl/Tk, 3, 25

summing IFs, 7

van Vleck correction, 8

30

